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COMMENT 

Critical dynamics of the one-dimensional Potts model 

E J S Lage 
Laboratorio de Fisica, Faculdade de Cigncias, 4000 Porto, Portugal 

Received 20 February 1985 

Abstract. We use the method developed by Achiam and Kosterlitz to obtain the dynamical 
critical exponent of the one-dimensional q-state Potts model. We find z = 3 ( q  > 2) and 
z = 2 ( q  = 2) ,  thus confirming lower-bound estimates found previously. 

In a previous work (Lage 1985, hereafter denoted by I) ,  we introduced a master 
equation formulation for the kinetic q-state Potts model. We have also shown, using 
a variational method, that the critical dynamical exponent ( z )  for the linear chain, 
with nearest-neighbour couplings, is not smaller than 3 for q > 2 .  We now present 
evidence that z = 3 for any y > 2 in the same model. 

Let 1.) denote the a t h  state (a = 1 , .  . . , y )  of the spin located at site i (we shall 
use the notation introduced in I ) .  We denote by P:"' the projection operator into 
such a state. The Hamiltonian is, then, written as 

- P H  =I k F , .  FL+l (1) 

where k is the nearest-neighbour coupling (measured in units of kBT, where T is the 
absolute temperature). The equilibrium probability distribution can be written as a 
state vector in this space: 

and Z is the partition function: 

Z = (ulexp(-PH)lu) = Tr exp(-PH). 

It is easy to decimate over every other spin (e.g., ?very odd numbered spin), to obtain 

I PLJ = ( h i d /  PeJ = 2-' e-PH 1 ueven) (4) 
where (U&)  and \U,,,,) are defined as in ( 3 a )  but with the index running over odd 
and even integers, respectively. Also, in (4), the transformed Hamiltonian is of the 
same form as the original one (which shows that decimation is exact), but with a new 
coupling constant ( k ' ) .  This can easily be obtained from the identity 

Tr(,] exp[kp, (Fz-l+p,+l)l  =exp[g(k)+f(k)P,- ,  * fjl+,l ( 5 )  

k' =f( k )  = log[(q - 1 + e2')/(q - 2 + 2  e')] ( 6 0 )  

g(k)  = log (y  - 2 + 2  e'). ( 6 b )  
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It is easy to consider the effect of adding a small magnetic field to the original 
Hamiltonian. If such a term is written as 

c /-i. PI 
I 

(where E m  h, = 0 can always be imposed, as in I ) ,  and treating it as a small perturbation, 
we find the renormalised fields to be: 

(7) 

Under decimation, the new lattice size doubles the original one which leads to the 

h h = h, { 1 + 2[ ( ek - 1 )/ (2ek  + q - 2)]}. 

well known result for the correlation length t( k )  

&( k ' )  = b - ' ( (  k )  (8) 

with b = 2. This in turn implies that at the non-trivial fixed point ( K  = a), the correlation 
length diverges exponentially: 

& ( k )  - e k / q  ( k > >  1). 

Now, if we start with a non-equilibrium distribution, the relaxation to equilibrium 
will proceed at  a characteristic relaxation rate w (or inverse relaxation time). From 
the dynamical scaling hypothesis (Halperin and Hohenberg 1969), one has 

w a (-=. 

w' = b-=w. (9) 

Thus, under the above change in length scale, there follows a scaling of the rate 

This relation will be used to find the dynamical critical exponent (2). 

was studied in I :  
The master equation governing the time evolution of the equilibrium distribution 

Here, the operators $ : r )  change the states of the spin i: 

Notice that 

The operator M, was also defined in I :  

MI = exp( PWIT~, , ,  exp( PW 

=[exp(-kPl * (P , - l+p ,+l ) ] /Tr ( , l  exp(-kp, ( p , - , +  pL+l)). (13) 

Finally, the q - 1 independent relaxation rates W, were found in I to obey rather 
general conditions which we assume here to be satisfied. 

We now study the dynamics generated by (1) using the method developed by 
Achiam and Kosterlitz (1978): after a sufficiently long time, the probability distribution 
is expected to deviate only slightly from the equilibrium one and  it can be written in 
a form similar to (2) but with time dependent couplings and  fields. We shall assume 
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that we can write 

\s(t)) = z-1 exp(-PH) (1 +C ii( t )  * F , )  lu). (14) 

We shall show that such a form is reproduced by decimation and, therefore, is the 
appropriate fixed form to choose. The time dependent field satisfies the condition 

c h, ( t )=O.  
a 

This implies that Z (  t )  = Z and hence can be ignored. Inserting (14) into ( lo) ,  decimat- 
ing over odd spins and using (12), we obtain 

J I )  -\p)=x(): a w$$:)-T w f ) ( u o d d l ~ ~ , Z - ' e x p ( - P H ) c i i ( f ) ' ~  U . 
a t  i r  

To calculate the required trace over odd spins, we notice first that the spin at site 2i 
is decoupled from the other spins. This, together with (12), allows us to write 

where use has been made of (4).  This equation is of the same form as ( lo) ,  with the 
assumed deviation from equilibrium if we use ( 7 )  to substitute for the renormalised 
field, and provided we show that the factor involving the traces can be written as in 
(13). This last stage, however, holds true only for q = 2  (Ising). For general q, a 
coupling (in the dynamic matrix, pnly) of next-nearest neighbours is generated. We 
thus generalise the definition of Mi (equation (13 ) )  to include such couplings 

We notice that this new form does not violate any of the required properties of the 
master equation (as studied in I). Actually, such generalisations of the dynamical 
matrix have recently been considered for the Ising model (Deker and Haake 1979). 
Using (16) in (15 ) ,  after some straightforward but tedious algebra, we obtain ( lo) ,  
with renormalised parameters, namely 

k ' =  f ( k )  (17a) 

-' q - 2 + exp(f( k ) )  + exp( (Y -f( - k ) )  
2 e k + q - 2  q - 2 +  2 exp( k )  

These are our renormalisation group equations which we believe to be exact. The first 
of these equations (which is the same as (6a))  defines the renormalisation of the 
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equilibrium couplings. The other two equations define the renormalisation of dynami- 
cal couplings; in particular, (17c) and (9) define the dynamical critical exponent. 

We consider here the fixed point results for the dynamical couplings. Particular 
care must be used to deal with the case q = 2 and, therefore, we study this case separate 
from the others. 

(a )  q > 2 .  Using ( 6 a ) ,  we obtain the following asymptotic limits: 

f( k )  = k - log 2 -+ (  q - 2) exp( -k)  ( k > > l )  

Then, from (17b), we obtain 

a * = f( -CO) = log[ ( q  - 1 )/ ( q - 2 11. 

w: = a  w,. 
This in turn allows us to obtain, from (17c) at the fixed point, 

Therefore, z = 3, consistent with the lower bound found in I. 
(b )  q = 2. In this case, we obtain: 

f( k )  = log cosh k .  

This is now an  even function of K,  which makes the asymptotic limits to be different 
from the other cases. We also easily find: 

1 +e" e a  +cosh' k 
log 1 +cosh2 k 

a'= log -- 
2 

The first equation has the obvious stable fixed point solution a = 0, which implies the 
well known result z = 2. 

We have applied the method developed by Achiam and Kosterlitz (1978) to the 
one-dimensional, q-state Potts model using the master equation formulation considered 
in a previous work (Lage 1985). The critical dynamical exponent is found to be equal 
to 3 for q > 2 ,  in agreement with the lower bound estimate found before. The Ising 
model critical behaviour is therefore different from the other q-state models; this 
difference arises, essentially, because, in one dimension, the transition takes place at 
zero temperature. 

Consideration of higher dimensionalities is obviously of interest and it is now being 
investigated. 
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